期刊信息
Navigation

刊名:地质科技通报
曾用名:地质科技情报
主办:中国地质大学(武汉)
主管:中华人民共和国教育部
ISSN:1000-7849
CN:42-1904/P
语言:中文
周期:双月
影响因子:0
数据库收录:
文摘杂志;北大核心期刊(1992版);北大核心期刊(1996版);北大核心期刊(2000版);北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2014版);北大核心期刊(2017版);化学文摘(网络版);中国科学引文数据库(2011-2012);中国科学引文数据库(2013-2014);中国科学引文数据库(2015-2016);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);日本科学技术振兴机构数据库;文摘与引文数据库;中国科技核心期刊;期刊分类:地质学
期刊热词:
环境地质工程

现在的位置:主页 > 期刊导读 >

计算机软件及计算机应用论文_面向科技情报分析

来源:地质科技通报 【在线投稿】 栏目:期刊导读 时间:2021-10-25

【作者】网站采编

【关键词】

【摘要】:文章摘要:在知识库构建中,最重要的部分就是提取文本中的三元组,而三元组的提取需要实体抽取和实体关系抽取技术。针对实体抽取提出了一种CWATT-BiLSTM-LSTMd (Character Word Attention-

文章摘要:在知识库构建中,最重要的部分就是提取文本中的三元组,而三元组的提取需要实体抽取和实体关系抽取技术。针对实体抽取提出了一种CWATT-BiLSTM-LSTMd (Character Word Attention-Bidirectional Long Term and Short Term Memory - long short-term memory)模型。该模型可以有效解决实体抽取中一词多义问题,并且可以模拟标签的依赖问题。在实体抽取的基础之上进行实体关系的抽取,为解决实体关系抽取中远程监督的局限性,提出一种基于强化深度学习的RL-TreeLSTM(Reinforcement Learning Tree Long Short Term Memory)模型。该模型分为选择器和分类器,选择器选择有效的句子传入分类器,分类器对句子中实体对的关系标签进行预测。选择器和分类器共同训练以优化选择和分类过程,可以有效降低远程监督带来的噪音。通过实验表明提出的模型和方法能有效地提高实体及其关系的抽取。

文章关键词:

论文分类号:G350;TP391.1



文章来源:《地质科技通报》 网址: http://www.dzkjqbzz.cn/qikandaodu/2021/1025/835.html


上一篇:科学研究管理论文_《石河子科技》编辑部
下一篇:图书情报与数字图书馆论文_“互联网+”时代的